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Abstract

Structural parts for aviation have very high demands on the development and production
process. Therefore, the entire process must be considered in order to produce high-quality AM
metal parts. In this case study, a conventional part was selected to be optimized for AM. The
process presented includes component selection, design improvement with a novel approach for
topology optimization based on the AMendate algorithm as basis of MSC Apex Generative Design,
component production on a SLM 250 HL and post-processing including heat treatment and surface
smoothing. With the topology optimization a weight reduction of ~60 % could be realized, whereby
the stress distribution is more homogeneous. Furthermore, the challenges of support optimization
and post-processing have to be addressed, in order to produce competitive parts.

Introduction

The additive manufacturing technology is characterized typically by the multi-layer composition
of the components. Altogether, the research and application area for additive manufacturing is a
growing market with often so-called "endless potentials". This can be deduced from the number of
publications and patents which have increased significantly since 2014 [1]. At the same time, the
number of AM technologies and companies continues to grow.

Additive manufacturing is particularly attractive, if the part is highly complex and/or the number
of parts per series is relatively small [2]. Applying Design for Function instead of the traditional
Design for Manufacturing approach and including part consolidation and integration, increases the
complexity of parts and assemblies. At the same time, weight, maintenance and waste reduction
can be achieved by using generative manufacturing techniques. In addition, the combination of
CAD/CAM and AM will shorten development times [3]. In aviation, this as well as the weight
saving potential or the reduction of tooling and warehouse costs should be taken into considerations
by calculating a business case for AM parts [4, 5]. The production of conventional part designs
with AM technology contradicts the overriding objectives of AM and aircraft design. Only by
leveraging the design freedom of AM technology this process will be truly competitive, raising
both performance potentials and cost savings [6]. This is as well reflected in the new approach by
Airbus, targeting clean sheet design solutions for the AM implementation [1].

Due to the high quality requirements and regulations in the aviation sector, the implementation of
AM technology is closely associated with very expensive material and process qualifications. The
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ASTM F42 and ISO TC 261 committees, namely the most important qualification committees,
work on universal guidelines for the AM qualification process [7]. However, up to now there are
only a few materials and processes qualified.
Today, Boeing and Airbus have already implemented thousands of generative manufacturing parts
for civil and military systems. Since ULTEM 9085, PEEK and PEKK are one of the first AM
materials suitable for aviation, most of these parts are manufactured using FDM technology.
However, the trend towards more metal parts is obvious as several metal AM parts today are
qualified and flying.
In general there are three approaches for qualification:

a) Statistical qualification

b) Equivalence-based qualification

¢) Model based qualification.
Whereby, version a) leads to costly empirical tests, the equivalence-based qualification is linked to
the statistical qualification and reduces therefore the required amount of tests, e.g. for a new
material on the same machine. The model based qualification is supported by an in detail
understanding of the process and related simulations [8]. For example, to certify the GE9X T25
sensor and LEAP fuel nozzle from GE, massive pre-testing was done to guarantee repeatable
results. Hereby, the overall process is qualified for this part [1, 9]. However, with progress done
in process qualification, the door can be opened for equivalence-based material or part
qualification. Furthermore, with improved process simulations, even validated model-based
qualification with high accuracy can be realistic in the future. Additionally, the concept of “qualify
as you go” might be applied. Hereby, multiple pre-, in- and post-process measurements shall
demonstrate that a part will perform as specified [8].
As soon as more AM companies, processes, parts and materials are qualified, the spare part market
might become more important. In future, the spare part could be manufactured on site and therefore
reduce warehouse and shipping costs [3, 5, 10, 11]. To reach this bright future scenario, it is
important to increase the number of flying AM parts further more.
When using AM on existing parts, the biggest challenge is to identify promising candidates. The
search for these parts is much more difficult than setting up a new part from scratch, as the business
case must cover all change costs, including changes to manufacturing drawings, component lists,
possible fastener adjustments, quality checks, maintenance and repair guidelines, etc. However,
within this study an existing aircraft bracket was identified and redesigned for additive
manufacturing based on the Laser Beam Melting (LBM) process.

Methodology and Original Bracket

The bracket identified here is installed less than 100 times a year. It is an assembly of two
aluminium brackets milled from solid raw material with a buy-to-fly ratio of approximately 6.25.
The boundary box of this part is around 100 x 110 x 120 mm. Based on the part size, cost above
average for conventional brackets and small number of parts per year this assembly was chosen for
redesign and replacement by an AM part. Related to assembly situation, only the load direction for
the attacking forces is known but not the size of those forces. Starting from the load direction, the
load capacities and limiting loads are determined by reengineering (Figure 1). The two brackets
are preassembled by rivets and fastened to the structure. A FEA is executed for each load case
with an arbitrary load of 1 N. Based on the stress and the deformation in load direction, the
ultimate-, limit load and bracket stiffness in load direction are determined (1-3).
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Figure 1 Original aircraft bracket with two load cases and the related Von Mises stress distribution per loadcase

The new part shall be designed for the LBM technology with AISi10Mg powder. Several aviation
and AM companies do work hard for the qualification of this material [12]. The part manufacturing
is done with an SLM-250HL from SLM Solutions. First a topology optimization (TO) is carried out.
This design is further adapted to the LBM-related design guidelines and then manufactured. The
parts are reworked and all functional areas are milled as part of the finishing process. Finally, a
static test validation of the fixture is carried out on a uniaxial tensile testing machine.

AlSil10Mg - Material Properties

For the topology optimization and the FEA validation a close look has to be given to the fatigue
behavior of AlISi10Mg LBM parts, as still most parts fail due to dynamic loads [13]. Based on the
properties of the conventional bracket, dynamic load cases have been calculated and applied to the
TO design. A fatigue strength at the ratio R = 0min/ omax = 0.1 is required for the new design. LBM
aluminium parts are known to have a higher yield and ultimate strength, compared to conventional
aluminium parts. The microstructure of LBM ““as build” parts is very fine due to the extremely high
cooling rates [14, 15]. In contrast, the elongation at break and fatigue strength is in the as build
condition mostly lower than the conventionally manufactured counterpart.

Several approaches have been made to improve the fatigue resistance of LBM parts. Most
promising are surface smoothing and heat treatment. As well, remaining powder moisture has an
influence on the porosity and the correlated part density which in turn influences the life time [16].
Obviously, there are multiple additional influencing factors for the part quality. The fatigue
information gathered in Table 1 are based on literature values with different treatment methods.
There are samples with different scanning parameters, layer thicknesses, build platform
temperatures, machines or orientations included to the table. In every case only the weakest sample
set is displayed per treatment method.
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Table 1 AlSil0Mg fatigue literature values of the weakest tested samples for various post treatment methods
*“T6 heat treatment: solution heat treated for 1 h at 520 °C followed by water quenching to room temperature and then aged for

*EEX < Values are read from graphs

Source | Load Machine Cycles Weakest Post treatment
Ratio Omax
[15] R=0.1 Trumpf ~5.5x10° ~90 MPa | machined
TrumaForm 5x107 ~100 MPa | machined
LF130 5x107 ~140 MPa | T6* heat treated and
machined
[17] R=0.1 Renishaw 7.6x10° 63 MPa | as build
AM250 3x10’ 94 MPa | T6* heat treated
SLM 3x10’ 126 MPa | T6* heat treated and
machined
[18] R=-1 EOS M400 2x107 140 MPa | machined
[19] R=-1 unknown 1x10’ ~50 MPa | as build
rotating
beam
mode 1x107 ~90 MPa | polished
[20] R=-1 EOSINT 3x 10’ 50 MPa | machined and polished
M-280 + HIP*** 500°C
1x 107 ~75 MPa | stress relieved (300°C / 2h)
machined and polished
1x 107 ~125 MPa | machined or polished
[21] R=-1 EOSINT 5x10° 97+7 MPa | as build
rotating M-270
beam
mode
[22]** | R=0.1 EOSINT 1x10° 178 MPa** | stress relieved (300°C / 2h)
M-280 machined
3 x10* 222 MPa** | stress relieved (300°C / 2h)
machined

With the information of Table 1 the maximal stress for the topology optimization and FEA
validation can be deducted. EOS GmbH and SLM Solutions AG suggest a heat treatment for two
hours at 300°C, as the typical microstructure of LBM parts is already close to the one obtained
after T6 heat treatment [21, 23]. In contrast, Uzan et al. [20] have experienced a life time reduction
by the stress relief procedure whereby large pores within the fracture surface were observed.
However, the life cycle points checked by Tang et al. do indicate a much better performance of
parts annealed by stress relief [22]. The large variety of obtained mechanical properties substantiate
that the effects of e.g. machine- and exposure setting, powder properties and testing procedure have
significant influences on the results.

Most of the data presented in the table are related to the stress ratio of R = -1, whereby the bracket
under consideration here is loaded by the ratio R = 0.1, which in general allows higher maximal
loads than at R = -1 ratio. Within the post processes a stress relief heat treatment is planned. Even
surface smoothing operations will be investigated. Thus, for simulation of the bracket a fatigue
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strength of 80 MPa has been assumed, which appears to be well in the range of the literature values
and covers uncertainties of process parameters with a factor of 1.17 for just heat treated [17] and
1.25 for machined samples from [15]. The used material properties are related to the powder,
machine and exposure settings. The most important exposure parameters are presented in Table 2
whereby the material properties are cumulated based on literature values [15, 17-22].

Table 2 Material Properties and exposure settings

Properties after heat treatment Contour Volume
(as provided by powder manufacturer)
E-Modul 59 GPa | Scan speed 500 mm/s 930 mm/s
Yield strength 205 MPa | Laser power 350 W 350 W
Ultimate strength 250 MPa | Hatching spacing 170 pm 170 pm
Elongation at break ~9 % Laser focus 80 um 80 um
Fatigue strength ~80 MPa

Platform heating 200°C

Layer Resolution 50 um

Topology Optimization

Starting point of the optimization is the conventional bracket assembly as shown in Figure 2.
Combining the dark green and dark red bracket much more three-dimensional optimization
potential is generated, as well as the benefits of part reduction. The bracket has five bolt
connections to the airframe, as marked in yellow in Figure 2.

Figure 2: Left graphic: Conventional bracket composition with main bracket (dark green) and additional bracket (dark red). On
the right: Design space (green) and non-design space (red) for topology optimization

For the design optimization there is a general principle used that is called “topology optimization”
(TO). Topology optimization is an automated extension for FEM based structural analysis. With
this iterative procedure a technical component can be optimized by changing its geometry
regarding different characteristic values. Most of the commercially available TO-software offers
optimization goals such as mass reduction at a given stiffness or a stiffness maximization at a
permitted mass. At the same time, the permitted strength must not be exceeded to ensure the
structural integrity. For most TO-processes, an additional FE-analysis is needed to validate the
occurring stresses of the final design.
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The process of topology optimization starts with a model setup, according to the classical FE
analysis including loads and external constraints on all interface areas. To run a proper topology
overall geometry is divided in a “design space” where material is allowed but not mandatory, and
the “non-design space”, where material is mandatory as for interfaces such as bolts or bearing seats.
To enable the optimization algorithm to generate best designs, it needs to have the most possible
design freedom, what is achieved with a design space that is as large as possible. It can be a simple
but massive geometry or an arbitrary complex one as in complex assemblies, which defines the
maximum allowed material for the component. By solving the FE calculation, stress and strain can
be determined for each of the elements located in this design space. The optimization algorithm
now decides which of the elements can be removed without exceeding given restrictions such as
displacement or stress maxima. Subsequently, a new analysis is performed with this reduced
amount of material, the element stresses are interpreted, and further material is removed or
reattached. Performing this iterative procedure, the optimization algorithm approaches an optimal
component shape step by step.

For this part the design space is created considering the adjacent components and is designed as
generously as possible. It should also be noted that the nondesign spaces must be accessible for
assembling and therefore material must be left out. The result can be seen in Figure 2 with the
design space marked green and non-design space marked red.

The software solution “AMendate” was used for the optimization of the bracket. AMendate is a
topology optimization software that has been developed by a young start-up of former DMRC-
employees from Paderborn University and is now part of the commercially available software
solution “MSC Apex Generative Design 2019”. The main difference of this “generative design”
tool towards most known topology optimization tools is the automated interpretation and definition
of a final geometry during the optimization. This enables the use of a clearly defined stress goal
instead of the beforehand mentioned ones: mass reduction or stiffness. As for other optimization
tools, during the optimization the material is reduced based on the FE results. Though, in each
iteration a specific design with a geometrically and mechanically useful surface is generated. Thus,
the user does not need to interpret the results and do manual redesign in a CAD-system. Each
design is analyzed by the algorithm regarding the occurring stresses in detail. This is possible due
to a completely new approach that is not based on the popular SIMP-algorithm (solid isostatic
material with penalization) which gives a varying density to each element, but on a so called hard-
kill algorithm. In these algorithms the elements considered to be unimportant for the structure with
low stress or strain are fully deleted and not considered in further iterations. This hard decision
enables a generation of a high quality part surface and thus determination of a clearly distinct
structure [28].

The software allows to influence the generated design in terms of complexity like a more “filigree”
design with many small struts and thin shells or with a more “massive” design with less but thicker
elements. Three versions have been calculated as shown in Figure 3. Hereby, the violet (rough) and
orange (normal) bracket do variate in weight about 0.1 g, whereby the blue (filigree) bracket
weights 2.7 g more than the orange one. All brackets have similar maximum stress levels and do
not violate the 80 MPa limit. The stiffness of the orange one is the highest. An additional criteria
for the design selection is the amount of attachment points. The violet (rough) design has only three
bolt connections to the airframe. For safety considerations, it can be expected, that additional
fastening connections and therefore struts will lead to a more good-natured failure pattern. Hence,
the normal setting is used for further development, it is based on stress and stiffness very good, has
multiple fastening points and as well the structure is not too filigree.
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Compared to bulky parts, thin structures do show much weaker mechanical properties due to an
increased ratio of contour to volume exposure and therefore increased porosity [14, 24]. These
imperfections should be taken into account when evaluating the results of topology optimization.
In particular, the very filigree struts cannot withstand the calculated loads of the FEA. Therefore,
an offset is given to the overall design and all functional areas are thickened to allow subtractive
post-processing. The areas subject to higher loads are additionally reinforced. The manual rework
is done together with the support optimization of the bracket.

Figure 3: Three different TO results from left to right with more filigree structures. Based on the filigree settings three (rough result
— left bracket) up to five (very filigree result — right bracket) attachment points are used. The final design with is developed further
is the orange one with four attachment point.

Support Optimization

For the LBM manufacturing process a supporting structure is required. Based on the AM design
guidelines, the build orientation should be specified at the beginning of the design process, since it
has several influences on the component properties [25]. For topology optimization without a
support optimization algorithm, however, the build orientation must be checked first. The software
Magics from Materialise and Meshmixer from Autodesk are used to optimize the build orientation.
Within this software, the STL file and orientation can be analyzed and optimized for various
purposes. These algorithms are based on the triangle orientation of each surface element in the STL
file. This allows a threshold overhang angle to be defined related to the process and the material.
All triangles with an orientation smaller than this angle should be checked for support
requirements. The objective of the optimization used here is to minimize the summed up projected
area on the X-Y plan. For post-processing, the inner support structure, which grows from part to
part, is particularly critical as it is difficult to remove and leaves double marks on the component
surface, one on the underside and one on the top.

In the LBM process, the purpose of the support is not only to keep the material in place, it is also
required for heat dissipation. With aluminium, the cone support in particular fulfils this purpose,
as the contact surface of the line or block support with tooth is very small. Experience shows stable
structures with good surface properties up to an overhang angle of 35°. In the literature even smaller
angles can be built, but the surface roughness increases significantly [26]. Newer LBM machine
generations do support special overhang parameter settings whereby the trend is even going to
much smaller angles with different exposure strategies and laser controls, e.g. pulsed laser [27].
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The purpose of the following procedure is to adapt the part design, in order to reduce the overall
support area. Particularly, the struts supported internally should be removed. Small holes and voids
are filled up. The part is sculpted to reduce overhangs to a limit of 35° which is shown in Figure 4.
Within this procedure the orientation angle is checked again and fine part orientation adjustments
based on the small modifications are done. The comparision of the original TO version and the
support addapted one shows significantly smaller overhang areas and therefore less required
support. Areas with two struts merging together, called bridging, do not need to be supported as
the part itself supports the structure efficiently. Aliminium is not very sensitive for residual stress
deformation during the build process, still additional cone supports has been added to the functional
areas of the bracket to reduce deformation due to residual stress. Test build jobs with both designs
have shown, that the postprocessing of the support adapted design is more than 10 times faster, as
the standard TO design and takes around 2 minutes for the rough support removal and 15 minutes
for mechanical smoothing of the attachment areas.

Figure 4 Optimized build orientation with reduced support area and less numbers of merging struts, Overhang angle of 35° marked
in red. Top row displays the TO output brackets, bottom row shows the adapted design. Left: close ups of examples for the
modifications: filled up voids and sculptured struts to avoid part to part support. Middle: Bottom View, support surfaces in red,
right: bottom view of the applied support structure

Finite Element Analysis

Finally, the results of the topology optimization and the part adaptions for quickly removable
support structure, need to be validated. Based on a finite element analysis, the part is tested for
static and fatigue behavior. The software Solidworks 2018 from Dassault Systemes was used for
the validation.
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Figure 5 TO-Bracket validation, left Von Mises stress (normalized to maximal stress of the original bracket) right: deformation
(normalized to maximal deformation of the original bracket)
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Load 2

By comparing the FEA results of the TO bracket to the FEA of the conventional bracket, it becomes
clear, that the stiffness of the part has increased. The new design can hold three times higher loads
of the first load case and 2.1 times higher loads in the second load direction. Therefore, load two
is the limiting load, as the initiated stresses within the bracket are higher. Hence, load two is used
as the validation load for the bracket tested on a uniaxial tensile test machine. Combining both
loads, the maximal stress of the bracket reach 114 MPa for the ultimate load and thus 75 MPa for
the limit load. Applying disturbance loads by vary the load direction of both loads about 10° shows
a maximal stress increase of ~25% to 96 MPa. After further thickening of the highly loaded struts
a rerunning of the analysis reveals that the disturbance load impact is reduced to 5% stress increase.
The bracket is therefore designed close to the limit and will withstand the limiting fatigue stress
level of 80MPa. However, in order to master the ultimate load in cyclic loading, the bracket should
be finished furthermore. Another option would be to further inflate the highly loaded struts.

Manufacturing, Post Processing and Finishing

The brackets are manufactured on a SLM 250-HL from SLM Solutions which is running on build
processor 2.2 and cannot apply overhang parameter settings. As the powder moisture does have a
significant influence on the part quality, the powder was dried prior to the process. With dry powder
the hydrogen porosity can be reduced significantly as well as a better part surface can be obtained
due to the reduction of weld spatter [16]. 35 cycles of vacuum drying and argon rinsing can dry
around 5 kg of aluminium powder within 35 minutes. The machine runs for 26 hours with a job
height of 110 mm to manufacture eight parts on one build platform. These work cycle times can
be reduced on modern multi-laser machines to improve the business case.

To reduce tension and potential deformation, as well as to obtain a higher ductility of the brackets,
the build brackets mounted on the build platform are stress relief annealed.

After removing the support structure and smoothing the attachment marks manually, all functional
surfaces, as displayed in Figure 6, are milled. All brackets are blasted with corund, followed by
glass bleads.
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Figure 6 Functional surface of the bracket in red and overview of the brackets during unpacking of the build job

Static Test Validation

For the static test of the bracket, it is loaded in the direction of load case two which indicates higher
stresses within the bracket. The specimen is fixed on a massive steel block at the bottom of the
tensile test machine. As displayed in Figure 7, the load is applied via attachment point B in an angle
of 30°. The attachment point A for load one is bolted together as a part of the stresses applied by
load two will be guided through this connection, which has a bolt connection even in the real
assembly. All fixing points from the bracket to the rig as well as the load attachments are prepared
with engineering fit H7.

Especially in the beginning of the load curve the gradient is not linear (Figure 7). It is expected,
that not all struts are loaded equally, thus the final stiffness of the bracket is reached first at around
80% load. The required ultimate load of the conventional (original) bracket is withstood by the
new design without fail. The component has passed the test for the calculated limit and ultimate
load intact, as well. At 225% load the limits of the test set up are reached. Thus, the bracket could
not be run in a destructive test.

250%

Calculated ultimate load
of the tested TO bracket

200%
150%

T 100% = mmmmmmm o o e e oo
Ultimate load of the

50% conventional bracket

Load ratio of the Conventional
%

0%
0o 025 o5 075 1 125 15 1,75 2

Traverse movement (mm)

Figure 7 Static validation of the support optimized TO-bracket, Lefi: the bracket in assembled on the test rig for load 2 attacking
in 30° on attachment point B. Load 1 attachment point (A) is bolted together to simulate the additional stiffening connection. Right:
Topology optimized bracket test diagram. Test stop without failure at 225 % of the load related to the original (conventional)
bracket.
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In combination with the engineering fit connections and the assumption, that the test rig made of
steel and fixed by steel 8.8 screws is much stiffer than the aluminium bracket, it can be expected
that the traverse movement is equal to the elongation of the bracket in load direction. Here it is
essential, that the elongation for the 100% load of 0.65 mm is much higher than calculated by the
FEA. Whereby, with 59 GPa the used E-Modulus for the FEA material model is already
conservative.

Additionally a fatigue test of the bracket design has been run at 20 Hz with a tension load ratio of
R =0.1 for load case two. Hereby the load pattern follows a sinus curve. The test was performed
on a Zwick/Roell HC10 servohydraulic testing machines, whereby the bracket is bolted to the same
test rig, as used for the static test. After ~4,670,000 cycle loads the test was stopped due to a
violation of the lower stress limit. By restarting the test some massive stress limit violations led to
a total fail of the part short after the restart of the machine. SEM images has been taken to analyze
the failure pattern as presented in Figure 8. Here the crack initiation, propagation as well as resting
lines and the final fracture zone can be seen. Very prominent are the amount of pores and unmolten
particles, exemplary marked in violet at the bottom left image of Figure 8. It was found, that the
used SLM machine had a defect laser, which could not deliver the set laser power. Hence the part
validation has to be repeated. However, even with those drawbacks the bracket has withstood close
to 4.7 million cycles as well as the static stress tests.

Initiation zone

i

Figure 8 Bracket after dynamic tests. Top left: crack line through the bracket. Top right: SEM image of the fracture zone. Bottom
left: crack initiation point. Bottom middle: rest lines and Bottom right: final fracture region

1942



Conclusion and Outlook

It has been shown, that performance improvements can be achieved by topology optimization and
additive manufacturing. The support optimization for the LBM process is hereby still in focus,
which leads to manual design adaptations. However, the company AMendate is working on an
optimization algorithm for their software, to generate support optimized TO results. This in turn
will reduce the required design effort after the TO dramatically. Furthermore, the individualities of
the LBM process need to be considered for every FEA analysis, as these structures often show
imperfections, which are related to a complex process. Powder drying helps already to improve the
process stability and part quality. Still differences between simulations and real build part tests can
be seen, e.g. in the predicted fracture region. Hereby the impact of the lately detected laser defect
could be a reason for this and at least for the high porosity within the parts. Hence, at least for
machines without a melt pool monitoring system additional test samples are recommended for
every build job with critical parts.

The work done for this bracket shows the potential of AM. As soon as the material is qualified for
civil aviation applications, multiple brackets like this, could be replaced as weight savings of
around 60% can be achieved additionally with improved performance. Statically test have shown,
that the material model used for the FEA simulation seems to be conservative. The dynamic testing
of the bracket is a very important step towards AM structural parts in aviation and need to be
repeated for this bracket. Only if the high cycle fatigue demands are fulfilled, this part will fly.
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